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Abstract—Distributed clustering is emerging along with the advent of the era of big data. However, most existing established

distributed clustering methods focus on problems caused by a large amount of data rather than caused by the large dimension of data.

Consequently, they suffer the “curse” of dimensionality (e.g., poor performance and heavy network overhead) when high-dimensional

(HD) data are clustered. In this article, we propose a distributed algorithm, referred to as Local Density Subspace Distributed Clustering

(LDSDC) algorithm, to cluster large-scale HD data, motivated by the idea that a local dense region of a HD dataset is usually distributed

in a low-dimensional (LD) subspace. LDSDC follows a local-global-local processing structure, including grouping of local dense regions

(atom clusters) followed by subspace Gaussian model (SGM) fitting (flexible and scalable to data dimension) at each sub-site, merging

of atom clusters at every sub-site according to the merging result broadcast from the global site. Moreover, we propose a fast method to

estimate the parameters of SGM for HD data, together with its convergence proof. We evaluate LDSDC on both synthetic and real

datasets and compare it with four state-of-the-art methods. The experimental results demonstrate that the proposed LDSDC yields

best overall performance.

Index Terms—High-dimensional clustering, distributed clustering, density-base clustering, subspace Gaussian model

Ç

1 INTRODUCTION

CLUSTERING, as a branch of unsupervised learning, is a pro-
cess of discovery and exploration for investigating inher-

ent and hidden structures within a large dataset [1]. To be
specific, clustering is to partition a set of data samples (or
observations) into subsets. Each subset is a cluster, such that
samples in a cluster are similar to one another, yet dissimilar
to samples in other clusters. Clustering has been extensively
applied to a variety of data-analysis tasks [2], [3]. However,
two main challenges are faced by centralized clustering algo-
rithms when handling big data. First, they require that all
data are collected in a central machine, which may be prohib-
ited in the practical scenario where a large amount of hetero-
geneous, complex data reside on different, distributed
working computers which are connected to each other via
local or wide area networks [4]. Second, large size and high

dimension of big data may prohibit any clustering algorithm
from operating in a single machine due to efficiency and cost
considerations.

To meet these challenges, many clustering methods have
been proposed to process big data in a distributed system.
Existing distributed clustering algorithms can be basically
divided into four groups: partition-based methods [5], grid-
based methods [6], density-based methods [7] and model-
based methods [7]. Partition-based methods employ an itera-
tive strategy to divide data into a certain of clusters according
to some predefined quantitative optimization criteria. Grid-
based methods quantize the original data space into a finite
number of grids, and then group the grids according to statis-
tical characteristics of samples in each grid. Density-based
methods first estimate the distribution density of objects in a
feature space, and then search for high density regions (i.e.,
clusters) separated by regions of lower density. Model-based
methodsfirst optimize the fitting of local data for some (prede-
fined) parametric statistical models, and then the estimated
parameters are collected and used in a central machine to
form clusters. There is no doubt that distributed clustering has
become a fundamental tool for high-level big data analysis.

Recently, clustering of high-dimensional (HD) data in a dis-
tributed environment is emerging due to the rapid growth of
data volume and the flourishing of distributed computing
technologies, with possible applications including text group-
ing [8], image retrieval [9] and hyperspectral image analysis
[10]. However, HD data involve several issues to distributed
clustering methods. The first one is that the shapes of clusters
become more complex as the dimension increases. Various
shapes may bring about an intractable challenge to partition-
basedmethods, which performwellmainly for convex clusters

� Y.-A. Geng and Q. Li are with the Beijing Key Lab of Transportation Data
Analysis and Mining, Beijing Jiaotong University, Beijing 100044, China.
E-mail: {gengyla, liqy}@bjtu.edu.cn.

� M. Liang is with WeiXin Group, Tencent Company Limited, Beijing
100044, China. E-mail: mingfeiliang@bjtu.edu.cn.

� C.-Y. Chi is with Institute of Communications Engineering, National
Tsing Hua University, Hsinchu 30013, Taiwan.
E-mail: cychi@ee.nthu.edu.tw.

� J. Tan is with the Department of Business Administration, Beijing
Technology and Business University, Beijing 100048, China.
E-mail: tanjuan@btbu.edu.cn.

� H. Huang is with the Department of Electrical and Computer Engineering,
University of Pittsburgh, Pittsburgh, PA 15260, and is also with JD
Finance America Corporation. E-mail: heng.huang@pitt.edu.

Manuscript received 10 Sept. 2019; revised 9 Jan. 2020; accepted 9 Feb. 2020.
Date of publication 24 Feb. 2020; date of current version 23 Mar. 2020.
(Corresponding authors: Juan Tan and Qingyong Li.)
Recommended for acceptance by Q. Zheng.
Digital Object Identifier no. 10.1109/TPDS.2020.2975550

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020 1799

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on March 22,2020 at 03:25:26 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-0173-4041
https://orcid.org/0000-0003-0173-4041
https://orcid.org/0000-0003-0173-4041
https://orcid.org/0000-0003-0173-4041
https://orcid.org/0000-0003-0173-4041
https://orcid.org/0000-0002-3860-4809
https://orcid.org/0000-0002-3860-4809
https://orcid.org/0000-0002-3860-4809
https://orcid.org/0000-0002-3860-4809
https://orcid.org/0000-0002-3860-4809
https://orcid.org/0000-0002-0599-1806
https://orcid.org/0000-0002-0599-1806
https://orcid.org/0000-0002-0599-1806
https://orcid.org/0000-0002-0599-1806
https://orcid.org/0000-0002-0599-1806
https://orcid.org/0000-0001-5004-7155
https://orcid.org/0000-0001-5004-7155
https://orcid.org/0000-0001-5004-7155
https://orcid.org/0000-0001-5004-7155
https://orcid.org/0000-0001-5004-7155
https://orcid.org/0000-0002-3483-8333
https://orcid.org/0000-0002-3483-8333
https://orcid.org/0000-0002-3483-8333
https://orcid.org/0000-0002-3483-8333
https://orcid.org/0000-0002-3483-8333
mailto:gengyla@bjtu.edu.cn
mailto:liqy@bjtu.edu.cn
mailto:mingfeiliang@bjtu.edu.cn
mailto:cychi@ee.nthu.edu.tw
mailto:tanjuan@btbu.edu.cn
mailto:heng.huang@pitt.edu


[11]. The second one is that the number of possible grids grows
exponentially with the number of dimensions. This exponen-
tial increase may impose heavy overheads on both computa-
tion and transmission of clustering information for grid-based
methods [12]. The third one is that data samples become
increasingly sparse as the dimension increases, thereby inflat-
ing the variance of estimated density and thus yielding a per-
formance degradation to density-based algorithms [11]. The
last one is that the parameter estimation forHDmodels is com-
putation consuming. As a result, model-based methods usu-
ally need to compromise between performance accuracy and
computation cost [13]. Overall, clustering HD distributed data
effectively and efficiently is still an open problem.

Motivated by an empirical observation that a local dense
region of a HD dataset is usually embedded in a low-
dimensional (LD) subspace [14], [15], this paper proposes a
novel approach for distributed clustering of HD datasets,
referred to as Local-Density Subspace Distributed Clustering
(LDSDC) algorithm, that operates in a local-global-local fash-
ion. First, in each sub-site, LDSDC exploits a density-based
method to divide its dataset into local regions. Second, the
data in each local region is fitted by a subspace Gaussian
model (SGM),which is flexible and scalable to the data dimen-
sion. Third, in the global site, LDSDC collects all the local
SGMs from sub-sites, and based on them generates a global
density distribution. Furthermore, local SGMs are merged
according to “connection values” (to be defined in (6) below)
under the global density distribution, and then the resulting
merging information are broadcasted to all the sub-sites.
Lastly, in each sub-site, local regions are merged into final
clusters according to the received merging information. In
brief, thisworkmakes the following contributions.

1) A distributed clustering algorithm LDSDC based on
SGM is proposed to handle large-scale and HD data.

2) An illustrative analysis of SGM is presented to dem-
onstrate its superiority in high-dimensional data
modeling.

3) A fast method for the estimation of SGM parameters
is proposed, including an algorithm and its conver-
gence proof.

A preliminary version of this work was published in
ICPADS 2017 [16], in which a distributed algorithm named
REMOLD is proposed. In this paper, it is significantly
extended from both theoretical and practical aspects. Specifi-
cally, beyond the general Gaussian model utilized by
REMOLD, the SGM (a compact statistical model) is consid-
ered for local cluster modeling, which proves efficient and
effective in HDdata clustering. Thenwe present a theoretical
analysis to demonstrate its superiority over general Gaussian
model in HD data modeling. Furthermore, a fast parameter-
estimation method for the SGM is proposed. Then extensive
experiments are presented to show the effectiveness of the
proposed LDSDC by clustering HD data (instead of two-
dimensional datasets adopted in [16]), including various
synthetic datasets for different scales, dimensions and clus-
ter shapes. Finally, we present some experimental results on
real HD datasets, which further show the efficacy and practi-
cability of the proposed LDSDC.

The rest of the paper is organized as follows. Section 2
introduces the relatedworks and notations. Section 3 presents

the proposed clusteringmethodLDSDC. Section 4 details sub-
space Gaussian model. Section 5 provides some simulation
results and experimental results to demonstrate the efficacy of
the proposed LDSDC. Finally, we conclude the paper in
Section 6.

2 RELATED WORKS AND NOTATIONS

2.1 Distributed Clustering

Distributed clustering aims to handle data inherently residing
on distributed sites, which cannot be collected in a central site
due to practical issues such as privacy concerns and limited
transmission bandwidth [17]. Unlike centralized clustering,
distributed clustering relies heavily on the network structure
because different networks have their own limitations and task
objectives [18]. In general, distributed clustering methods are
designed for two network topologies: global-sub-site networks
and peer-to-peer (P2P) networks [19]. The global-sub-site para-
digm demands a reliable global site to collect all necessary
information from distributed sub-sites. By contrast, the P2P
paradigm does not have a central server and all sites with lim-
ited view coverage of the entire network only exchange neces-
sary information to perform their own local clustering tasks
[18], [19]. In this paper, we focus on distributed clustering
methods for the global-sub-site networks.

The well-known method, k-means [20] is the basis of
many distributed methods. To avoid the exposure of private
data in the transmission, Vaidya and Clifton [21] proposed a
distributed k-means with the privacy-protection taken into
consideration. It can achieve good performance when differ-
ent sites contain different private attributes for a common
set of entities. Distributed k-means algorithm is basically an
ensemble-learning-based distributed clustering algorithm
introduced in [22]. This method first does clustering in sub-
site using k-means, then send all centroid values to the cen-
tral site, and finally global centroid values of the underlying
global clustering are obtained by using k-means again [23].
Jeong et al. [24] proposed a modified distributed k-means
algorithm for clustering huge amount of distributed biologi-
cal data. Balcan et al. [25] provided a distributed method for
constructing a global core-set of data samples, based on
which k-means clustering can handle distributed data effi-
ciently. Overall, these methods are efficient enough to deal
with big data, but their performance is on par with that of
the conventional k-means method.

In [26], Xu et al. presented a parallel clustering method,
based on the conventional centralized clustering algorithm
DBSCAN [27]. First of all, it divides the dataset into several
partitions at the global site, and then send each partition to a
sub-site, where the partition is locally clustered by using
DBSCAN. Finally, the clustering results obtained from the
sub-sites are merged at the global site. In [4], a DBSCAN-
based distributed clustering algorithm named DBDC was
proposed. It first clusters data at each sub-site, and some spe-
cific core samples and the associated neighborhood parame-
ters are extracted at the same time, which are then collected at
a global site. Based on these core samples and parameters,
DBSCAN is used to generate the final clusters at the global
site. Though DBDC can efficiently find clusters with arbitrary
shapes, the excessive input-parameters and high performance
sensitivity to the input-parameters weaken its practical
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applicability. Accordingly, approaches such as SDBDC [28]
and LDBDC [29] have been proposed to improve on DBDC.
On thewhole, thesemethods can detect clusters with complex
shapes in a distributed system, but they are confronted with a
variety of densities ofHD clusters.

Density-Peak (DP) clustering [30] is a centralized cluster-
ing algorithm that has distinctive advantages over many
other algorithms. Based on DP clustering, Gong et al. [31]
proposed an efficient distributed density peak clustering
(EDDPC) algorithm. It employs Voronoi diagram and data
replication/filtering that significantly reduce the amount of
both useless distance measuring and data shuffle in data
processing. Zhang et al. [32] proposed a distributed DP clus-
tering algorithm, named LSHDDP, based on a locality sensi-
tive hashing (LSH) function. The LSH function has the
property: samples that are closer to each other have a higher
collision probability. LSHDDP exploits LSH for partitioning
data, performs local computation, and aggregates local
results to obtain the final results. It has been shown that
LSHDDP can achieve a factor of 2x speed-up over the
EDDPC approach, while returning comparable clustering
results. Overall, these methods can reproduce the perfor-
mance of the centralized DP clustering, but they usually
require transmission of a considerable amount of data sam-
ples, thus adverse to network-transmission and privacy-
protection.

Kriegel et al. [33] proposed a distributed model-based
clustering algorithm. Their method uses the expectation
maximum (EM) method [34] for detecting local models in
terms of mixtures of Gaussian distributions. Then, these
local Gaussian distributions are merged in the global site to
generate a more meaningful global model. In [35], Lin et al.
presented a clustering technique with distributed EM mix-
ture modeling. This method controls data sharing, and pre-
vents disclosure of individual data attributes or any results
that can be traced back to an individual site. In summary,
these methods are effective and efficient for LD data, but
usually they have to sacrifice accuracy to compromise the
computation cost for HD data.

2.2 High-Dimensional Clustering

With regard to centralized clustering HD data, many meth-
ods utilize global dimension-reduction techniques followed
by a standard clustering algorithm. The most popular
dimension-reduction technique is Principal Component
Analysis (PCA) [36]. PCA aims to find a linear mapping
from the original space to a LD space such that the
mapped data can preserve the variance of the original
data. However, the distribution manifold of samples in the
original feature space is sometimes non-linear. Applying
PCA in this case will lose the non-linear structure informa-
tion. To overcome this challenge, kernel PCA [37] utilizes a
user-specified kernel (similarity matrix) to implicitly con-
struct a non-linear mapping from the original feature space
to a new space, and performs PCA in the new space via
the kernel trick [38]. The effectiveness of the kernel PCA
highly relies on the choice of the kernel, but lacking in fea-
sible methods for the kernel choice. In [39], Tipping and
Bishop proposed a probabilistic PCA, which gives PCA a
statistical interpretation, provided that an observation

sample x 2 RM is generated by the sum of three latent
terms, i.e., x ¼ Wzþ mmþ �n, where z � Gð0; IDÞ and
n � Gð0; IMÞ are two latent random variables that follow
the standard Gaussian distribution. W 2 RM�D, mm 2 RM

and � 2 R are unknown parameters to be estimated by the
probabilistic PCA. Generalized PCA [40] is an algebraic
method to handle the case where data distribute in multi-
ple LD subspaces. It has a solid theory foundation, but
extra high complexity restricts its application. Robust PCA
[41] estimates the principal subspace of data via convex
programming and it has shown better performance than
PCA while processing data in the presence of outliers.

On the other hand, there are some clustering methods
designed to process HD data directly. CLIQUE [42] is a pio-
neering approach to cluster HD data. It discretizes the fea-
ture space into regular intervals in every dimension and thus
generates a grid structure. Then dense cells that contain
more samples exceeding a threshold are combined with
other dense cells in a bottom-up approach [43]. Adjacent
dense cells are merged to establish the actual clusters. CLI-
QUE scales linearly with input size, so it has good scalability
as the data dimension in the data is increased. However,
obtaining a meaningful clustering is dependent on proper
tuning of the grid size and the threshold. This may be diffi-
cult in practice because the grid size and threshold are used
across all dimension combinations in the dataset [1]. Many
extended methods [44], [45], [46] have been proposed to
overcome the drawbacks of CLIQUE. By integrating density-
based clustering and subspace clustering, Kailing et al. [47]
proposed a density connected subspace clustering method
which can detect arbitrarily shaped clusters in subspaces of
the original HD space. Charles et al. [48] introduced subspace
Gaussian distribution for the research area of clustering and
then proposed a HD data clustering method with it. This
method follows a mixture-model framework, in which the
models are limited to subspace Gaussian distribution. Then
an EM-based algorithm is developed to estimate the parame-
ters of themixture-model. Finally, each sample is assigned to
a cluster following themaximumposterior probability. Their
experiments show that this method outperforms other HD
clusteringmethods.

In summary, though distributed clustering and HD clus-
tering have been extensively studied separately, limited
works focus on clustering HD data with low overhead
under distributed environments, which is also a common
problem in recent applications. The LDSDC proposed in
this work provides a feasible solution to this problem.

For ease of the ensuing presentation, some notations are
defined hereafter. Italic symbols (e.g., a and A) represent
scalars. Calligraphic symbols denote sets (e.g.,A) or subspa-
ces (e.g., S). Boldface capital (e.g., A) and boldface lower-
case (e.g., a) symbols denote matrices and vectors,
respectively. IM and 11M represent the identity matrix in
RM�M and the all-one vector in RM , respectively. �iðAÞ
denotes the ith largest eigenvalue of a symmetric matrix A.
�I

i¼1 �i , diagð�1; . . .; �IÞ is a block diagonal matrix, where
the ith diagonal entry �i can be a matrix or a scalar. kak rep-
resents the ‘2-norm of a. We use TrðAÞ, RðAÞ and kAkF to
represent respectively the trace, the range space and the
Frobenius norm of A. j � j denotes the cardinality of a set or
the determinant of a square matrix.
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3 LOCAL-DENSITY SUBSPACE DISTRIBUTED

CLUSTERING

In this section, we present the LDSDC algorithm. Consider a
scenario that consists of a global site and W sub-sites. The

total sample set X ¼ S W
w¼1Xw is distributed and stored in

W sub-sites with Xw ¼ fxwn 2 RMgNw
n¼1 stored in the wth sub-

site. Our goal is to cluster X with low overhead in this dis-
tributed system. As shown in Fig. 1, our algorithm com-
prises four stages, as follows:

1) In each sub-site, LDSDC divides samples into local
clusters using a density-based method, where each
local cluster is termed an atom cluster.

2) In each sub-site, LDSDC models each atom cluster
using a SGM. Then, estimated SGM parameters of all
models are sent to the global site.

3) In the global site, a global density distribution is gener-
ated by integrating all local parameters. Based on the
global density distribution, LDSDC calculates the con-
nection values (defined in (6) below) for all the pairs of
local models, and then merge similar models accord-
ing to the connection values. Then the obtained merg-
ing result is sent back to each sub-site.

4) In each sub-site, similar atom clusters are merged
according to the received merging result.

However, when the given dataset is ill-distributed in dif-
ferent sub-sites (e.g., samples stored in sub-sites are unbal-
anced, and/or many dense clusters are partitioned in
different sub-sites). In this case, prior to applying the 4-stage
LDSDC, data reshuffling according to Local Sensitive Hash-
ing values [49] is needed, which proves effective in making
data loading balanced and close samples assigned to the
same sub-site [16].

Next, the above-mentioned four stages of the proposed
LDSDCarepresented in the following subsections, respectively.

3.1 Local Clustering (Stage 1)

In general, the overall distribution of a dataset is too com-
plex to model. LDSDC partitions a local dataset into several
local clusters such that each local cluster has a relative sim-
ple distribution for easing the subsequent modeling proce-
dure. Specifically, LDSDC divides Xw into local clusters by
exploiting a density-based method [50], which has shown
superior performance among established single-machine
clustering methods. The procedure is detailed next.

First, a K-Nearest-Neighbors (KNNs) kernel is used to
estimate the density of each sample. Given a sample x, its
KNNs kernel density, denoted by rðxÞ, is defined as

rðxÞ ¼ b
X

y2NK ðxÞ
exp �kx� yk

s

� �
; (1)

where NKðxÞ denotes the KNNs set of x; s ¼
1

jXwj
P

x2Xw
kx� nKðxÞk is the mean of the distance between

x and its Kth nearest neighbor nKðxÞ; b is a normalization

factor. Intuitively, rðxÞ measures how dense the sample dis-

tribution is around x.
Second, LDSDC finds the samples with the locally maxi-

mal r value and marks them as core samples. Formally, the
core sample set is defined as

Ow ¼ xjx 2 Xw; rðxÞ 	 max
y2NK ðxÞ

rðyÞ
� �

: (2)

On the other hand, for a non-core sample x, its higher-density
nearest neighbor (HDNN) ppðxÞ is defined as

ppðxÞ ¼ argmin
y2NK ðxÞ;rðyÞ> rðxÞ

kx� yk: (3)

HDNNallows us to construct a directed graph Gw ¼ ðXw; EwÞ,
where each vertex is a sample and a direct edge exists from a
non-core sample to its HDNN, namely, Ew ¼ x;ppðxÞð Þjx 2f
XwnOwg. Fig. 2 shows an illustrative example for Gw, in which

Fig. 1. The structure of the proposed LDSDC algorithm for distributed clustering.

Fig. 2. Illustration for core samples and atom clusters. The atom clusters
are represented by different colors and the core samples are marked
using red bold circles. Trees rooted at the core samples form an acyclic
graph. Each tree corresponds to an atom cluster.
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each circle represents a sample with an integer indicating the
magnitude of its kernel density for simplicity; a dotted arrow
denotes a direct edge x;ppðxÞð Þ.

As we can see, in Gw, starting from any non-core sample
and following the directed edges, it will eventually reach a
core sample. In other words, Gw can be partitioned into trees
with disjoint vertices, where each tree is rooted at a core
sample. A core sample and its descendants thus form a local
cluster, called an atom cluster, which is denoted as Cs.

3.2 Modelling Atom Clusters (Stage 2)

Atom clusters form the basis of final clusters, while a true
cluster may consist of many atom clusters distributed in dif-
ferent sub-sites. Thus, a globally collecting step is needed to
decide which atom clusters should be merged.

An atom cluster can be viewed as a local dense region
of the given HD dataset, which is usually embedded in a
LD subspace in the real world [14], [15]. In other words,
the local samples though may be sparse in the whole HD
space, usually are densely distributed in a LD subspace, in
which the sample density is relatively stable. On the other
hand, since the size of each atom cluster is usually small,
to avoid overfitting [51], we do not pursue to exactly char-
acterize the distribution of each atom cluster, but to give a
“sketch” to it in an economical and efficient way. In this
case, SGM proves competent in modeling HD samples
embedded in LD subspace [48]. So we choose it as the sam-
ple model. Specifically, an atom cluster, denoted as Cs, is
modeled by a SGM characterized by a parameter set Fs.
Then all the estimated parameter sets will be sent to the
global site to further attain a global distribution density.
How to efficiently estimate Fs for each Cs will be presented
in Section 4.

3.3 Merging Models (Stage 3)

With the collected parameter sets of Fs, LDSDC defines a
global density distribution by summing all local distribu-
tions. Specifically, for a sample x in the feature space, its
global density rgðxÞ is given by

rgðxÞ ¼
XS
s¼1

jCsj
jXj fðxjFsÞ; (4)

where S is the total number of local models (atom clusters)
and fð�jFsÞ denotes the probability density function of the
SGM with parameter Fs. In practice, calculating rgðxÞ
directly is time-consuming, so we use its log-lower-bound
for the subsequent computations instead. Specifically,
according to Jensen’s inequality [52], the log-lower-bound rg
is given by

logrgðxÞ 	
XS
s¼1

jCsj
jXj log fðxjFsÞ , rgðxÞ: (5)

We empirically found that computing this bound can yield
a factor of 1.5-3x speed-up with little accuracy loss.

Based on the log-lower-bound, the connection value
between the ith and jth model ai;j is defined as

ai;j ¼ min
u2½0;1


rg ummi þ ð1� uÞmmj

� �n o
; (6)

where mmi 2 Fi and mmj 2 Fj denote the mean vector of the ith
model and the jth model, respectively. Due to the non-con-
vexity of (6), we approximate its solution via a simple but
effective method as follows. First, divide the interval [0,1]
into L consecutive intervals ðl� 1Þ=L; l=L½ 
; l ¼ 1; . . .; L. Sec-
ond, find a local minimal value for âl

i;j for l ¼ 1; . . .; L by ter-
nary search [53]. Finally, approximate the optimal solution
to (6) by âi;j ¼ minl â

l
i;j. It can be shown that âi;j ! ai;j as

L ! 1.
Collecting connection values between different models can

form a symmetricmatrixA ¼ âi;j

� �
with size ofS2. Thematrix

A is normalized (with all its elements between 0 and 1)
through the min-max normalization. Then, the models i and j
are merged if âi;j 	 d, where d 2 ½0; 1
 is a threshold, thus
yielding a merging table. Though d can be set to any value in
the range of ½0; 1
, there is only a small collection of d values
(its size is upper bounded by S) that affects the final merging.
Furthermore, this collection together with d can be found effi-
ciently via solving a maximum spanning tree in the graph
defined by thematrixA (by treatingA as an adjacencymatrix;
see the FJDD algorithm in [50] for more details). In Section 5.5,
we will discuss more about the choice of this parameter.
Finally, LDSDCbroadcasts this table to all the sub-sites.

3.4 Merging Local Clusters (Stage 4)

In this stage, each sub-site independently merges atom clus-
ters according to the received merging table. Then the final
clusters at each sub-site are generated accordingly. Let us
conclude this section by a computational analysis to the pro-
posed LDSDC algorithm.

Let Nw be the number of samples in the wth sub-site. The
computational complexity of Stage 1 is OðN2

wÞ since KNNs
need to be computed for each sample. In Stage 2, the parame-
ters of SGM can be estimated using Algorithm 1, whose com-
plexity will be discussed in Section 4.2. In Stage 3, the cost of
estimating (6) for a pair of models isOðM2CÞ, whereM is the
data dimension and C is a small number (around 30 by our
experience). We found that the connection value between
two far apart models is usually negligibly small. Thus, we
only consider

ffiffiffiffi
S

p
neighbors of each model in computing the

connection value, where S is the number of models (atom
clusters). As a result, the computational complexity of Stage
3 is OðS ffiffiffiffi

S
p

M2CÞ. Finally, Stage 4 has a computational com-
plexity ofOðNwÞ. The analysis of network transmission over-
head is left in Section 4.1.

4 SUBSPACE GAUSSIAN MODEL

In this section, we present the fundamental SGM used for
modeling each atom cluster (cf. Section 3.2). The formula-
tion of SGM has been briefly presented by Bouveyron et al.
[48] without in-depth discussion about the intuition behind
it. In Section 4.1, we establish SGM in an illustrative manner
to bridge the gap between the intuition and the formulation.
Furthermore, we propose a novel fast parameter-estimation
method for SGM, and then present a theoretical analysis of
its correctness and convergency in Section 4.2.

4.1 Establishment of Subspace Gaussian Model

Although Gaussian model is a popular model in data repre-
sentation, real HD samples usually distribute in a LD
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subspace, and so the corresponding sample covariance
matrix is nearly singular. This yields serious numerical
problems in calculating the probability density of the stan-
dard Gaussian model. Furthermore, when the subspace
dimension is far smaller than the original space dimension,
the amount of parameters of the covariance matrix in the
LD space may be significantly smaller than that in the HD
space, implying higher overhead in computation and trans-
mission cost for the latter. Some special Gaussian models
have been proposed to reduce the number of parameters
[33], but their assumption that sample components in differ-
ent dimensions are statistically independent may not be
very realistic.

Given an M-dimensional data space, SGM assumes that
a singular Gaussian distribution is embedded in aD-dimen-
sional affine subspace1 S ¼ fmmþ Pzjz 2 RDg, where mm 2 RM

and P 2 RM�D are respectively a shift vector and an ortho-
normal basis matrix of the D-dimensional subspace. Thus,
the singular Gaussian distribution in this subspace is pro-
portional to

exp
n
� 1

2
ðx� mmÞTPS�1PT ðx� mmÞ

o
; (7)

where S ¼ �D
d¼1 sd is a diagonal matrix, i.e., the covariance

matrix is diagonal under the basis matrix P. For any sample
x 2 RM , its density under SGM is related to two terms. As
shown in Fig. 3, one is the density of PrjSx, where
PrjSx ¼ mmþ PPT ðx� mmÞ is the projection of x onto S. The
other is the distance from x to the affine subspace S, which
is kðI� PPT Þðx� mmÞk.

By incorporating the above two terms, the probability
density function of SGM can be expressed as

fðxjmm;P;S; s0Þ ¼ 1

ð2pÞM2 s
M�D

2
0

ffiffiffiffiffiffijSjp
� exp

n
� 1

2
ðx� mmÞTPS�1PT ðx� mmÞ

o

� exp
n
� 1

2

kðI� PPT Þðx� mmÞk2
s0

o
:

(8)

On the right side of (8), the first term is the normalization
factor; the second term models the singular Gaussian distri-
bution in an affine subspace; the third term can be viewed

as a decay factor which is exponentially related to the nega-
tive distance square from x to S. From (8), one can see the
total amount of the parameters (mm;P;S and s0) is
M þM �DþDþ 1 � OðMDÞ.

Compared with the standard Gaussian, SGM allows the
covariance to be completely defined in an affine subspace.
Furthermore, the total number of parameters of SGM is very
flexible, which can easily adapt to the data dimension by
choosing a suitable value ofD. Note that whenD � M, SGM
has much smaller parameter size OðMDÞ than the standard
Gaussian with parameter size OðM2Þ. Recalling that S is the
total number of atom clusters and W is the number of sub-
sites, from Fig. 1, it is evident that the network transmission
overhead of our method is S �OðMDÞ þ S �W �
OðSðMDþWÞÞ. Furthermore, if the reshuffling pre-process
is performed, the network transmission overhead will
increase byOðMNÞ, whereN is the sample set size.

4.2 Fast Parameter-Estimation for SGM

In this subsection, we derive a fast parameter-estimation
method for SGM. Assume that s1 	 s2 	 � � � 	 sD without
loss of generality, and that sD 	 s0 so that the SGM can cap-
ture the principal structure of the distribution of data. Thus,
given a sample set X ¼ fxn 2 RMgNn¼1, the maximum likeli-
hood (ML) estimation of SGM can be formulated as the fol-
lowing optimization problem:

max
mm;P;S;s0

XN
n¼1

ln fðxnjmm;P;S; s0Þ

s.t. PTP ¼ ID;

S ¼ �D
d¼1

sd;

s1 	 s2 	 � � � 	 sD 	 s0 > 0:

(9)

Solving problem (9) directly is difficult. Fortunately, by
some transformations, (9) can be reformulated into a tracta-
ble form. To begin with, we introduce an auxiliary matrix
Q 2 RM�ðM�DÞ such that

P;Q½ 
T P;Q½ 
 ¼ IM; (10)

i.e., the columns of Q are a set of orthonormal basis vectors
of the orthogonal complement of the range space RðPÞ.
Then, by letting

SS ¼ P;Q½ 
ðS� s0IM�DÞ P;Q½ 
T ; (11)

(8) can be reformulated as

Gðxjmm;SSÞ ¼ 1

ð2pÞM2 ffiffiffiffiffiffijSSjp exp
n
� 1

2
ðx� mmÞTSS�1ðx� mmÞ

o
;

(12)

which is nothing but the density function of a general
Gaussian distribution in HD space [51]. Based on (12), the
log-likelihood in (9) can be rewritten as

Fig. 3. A graphical interpretation of SGM.

1. In this paper, we indiscriminately use the terms “affine subspace”
and “subspace” for simplicity.
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XN
n¼1

lnGðxnjmm;SSÞ

¼ � 1

2

XN
n¼1

M ln 2pþ ln jSSj þ ðxn � mmÞTSS�1ðxn � mmÞ
	 


¼�N

2
M ln 2pþ ln jSSj þ TrðCSS�1Þ

	 

;

(13)

where

C ¼ 1

N

XN
n¼1

ðxn � mmÞðxn � mmÞT : (14)

Notice that maximizing (13) is equivalent to minimizing
ln jSSj þ TrðCSS�1Þ, and thus the ML estimation of SGM is
equivalently to solve

min
mm;P;S;s0

ln jSSj þ TrðCSS�1Þ

s.t. SS ¼ P;Q½ 
ðS� s0IM�DÞ P;Q½ 
T ;
P;Q½ 
T P;Q½ 
 ¼ IM;

S ¼ �D
d¼1

sd;

s1 	 s2 	 � � � 	 sD 	 s0 > 0:

(15)

By setting the derivative of the objective function in (15)
with respect to (w.r.t.) mm to zero, the optimal solution for mm
is given by

mm
? ¼ 1

N

XN
n¼1

xn: (16)

Substituting this into (14), one can see that C is nothing but
the sample covariance matrix. Then, to find optimal P and
Q, we need the following proposition.

Proposition 1. Suppose that C ¼ FLLFT is the eigenvalue
decomposition of C defined by (14). If the problem (15) is
solvable, then there exists an optimal solution such that
P

?
;Q

?½ 
 ¼ F.

Proof. Because C is symmetric and SS is positive definite, by
using the fact

Tr CSS�1
	 


	
XM
m¼1

�mðCÞ � �M�mþ1 SS
�1

	 

¼

XM
m¼1

�mðCÞ
�mðSSÞ :

(Theorem 4.3.53 in [54]), we have

ln jSSj þ Tr CSS�1
	 


¼
XM
m¼1

ln�mðSSÞ þ Tr CSS�1
	 


	
XM
m¼1

ln�mðSSÞ þ
Xm
m¼1

�mðCÞ
�mðSSÞ :

(17)

Suppose that SS
?

is an optimal solution to problem (9). By
using the result (17) and the eigenvalue decomposition
of C ¼ FLLFT , we have

ln jSS? j þ Tr CðSS? Þ�1
	 


	
XM
m¼1

ln�mðSS? Þ þ
XM
m¼1

�mðCÞ
�mðSS? Þ

¼ ln F
	

�M
m¼1

�mðSS? Þ


FT

����
����

þ Tr

�
C
h
F
� �M
m¼1

�mðSS? Þ�FTi�1

:

(18)

This implies that F �M
m¼1 �mðSS? Þ� �

FT is an optimal solu-

tion such that P
?
;Q

?½ 
 ¼ F. tu
It can be verified that problem (15) is solvable if

D < rankðCÞ. This condition can be easily satisfied as N is
much larger than D in practice. Thanks to Proposition 1, let
P;Q½ 
 ¼ F and then solving (15) reduces to solving

min
fsdgDd¼0

XD
d¼1

	
ln sdþ�dðCÞ

sd



þ

XM
m¼Dþ1

	
ln s0þ�mðCÞ

s0




s.t. s1 	 s2 	 � � � 	 sD 	 s0 > 0;

(19)

and its optimal solution is given in the following proposition.

Proposition 2. The optimal solution to (19) is given by

s
?

d ¼ �dðCÞ ðd ¼ 1; 2; . . .; DÞ; (20)

and

s
?

0 ¼
1

M �D

XM
m¼Dþ1

�mðCÞ: (21)

So far we have derived the ML estimators of mm, P, S and
s0 (cf. (16), Propositions 1 and 2). However, calculating P

?

and S
?
needs the eigenvalue decomposition of the matrix C,

which leads to a computation complexity of OðM3Þ. In addi-
tion, storing C requires a memory space of OðM2Þ. Both the
computation and the storage overheads are almost intolera-
ble when M is large (e.g., M > 105). To deal with this chal-
lenge, we propose a fast parameter-estimation method for

the caseM2  D�N .
First of all, due to

s
?

0 ¼
1

M �D

XM
m¼Dþ1

�mðCÞ

¼ 1

M �D

	
TrðCÞ �

XD
d¼1

�dðCÞ


;

(22)

only the D largest eigenvalues and the associated eigenvec-
tors of C need to be computed. On the other hand, C can be
expressed as C ¼ 1

N
�X�XT , where �X ¼ X� mm1TN 2 RM�N is the

centralized sample matrix. Thus, the partial eigenvalue
decomposition of C is equivalent to solving

max
P

1

2
TrðPT �X�XTPÞ

s.t. PTP ¼ ID:

(23)

Inspired by the re-weighted optimization framework
[55], we propose the following iterative two-step method to
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solve problem (23)

1) Update G ¼ �Xð�XT P̂Þ; (24a)

2) Solve P̂ ¼ argmax
PTP¼ID

TrðPTGÞ: (24b)

Proposition 3. Let hðPÞ be the objective function of problem (23)
and Pt denote the solution yielded by the two-step method (24a)
and (24b) at the iteration t. Then hðPtÞ increases with t mono-
tonically and the sequence fPtg converges to a KKT solution
[52] to (23).

Proof. Notice that hðPÞ is strictly convex when P 2 Rð�XÞ
andrPhðPÞ ¼ �X�XTP. If Ptþ1 6¼ Pt, we have

hðPtþ1Þ > hðPtÞ þ Tr Ptþ1 � Ptð ÞTrPhðPtÞ
	 


	 hðPtÞ;

where the second inequality holds because

Ptþ1 ¼ argmax
PT P¼ID

Tr PTrPhðPtÞ
� �

: (25)

Moreover, hðPÞ is bounded above by 1
2 k�Xk2F . Therefore,

hðPtÞ increases with t monotonically and the sequence
fPtgmust converge.

On the other hand, the Lagrangian of the optimization
problem in (25) can be written as

LðP;AÞ ¼ Tr PTrPhðPtÞ
� �þ Tr AT

�
PTP� ID

�� �
;

where A 2 RD�D is the Lagrange dual variable. Since
Ptþ1 is the optimal solution to (25), according to the KKT
condition, there exists an ~A such that

rPLðPtþ1; ~AÞ ¼ rPhðPtÞ þ Ptþ1
~Aþ ~AT

� � ¼ 0: (26)

When Ptþ1 ¼ Pt, (26) becomes

rPhðPtþ1Þ þ Ptþ1
~Aþ ~AT

� � ¼ 0;

which implies Ptþ1 is also a KKT solution to (23). Thus we
have completed the proof. tu
The updating G in (24a) needs a computational com-

plexity of OðDMNÞ. In (24b) for solving P̂, the optimal
solution is known as P̂ ¼ UVT [56], where U and V are
left and right singular vector matrices of G ¼ UDVT

(singular value decomposition), respectively. Thus, (24b)
requires a computational complexity of OðD2MÞ. Finally,
we come up with the fast ML estimation method in
Algorithm 1, with the computational complexity of
O DMN þD2Mð Þ. Furthermore, it only needs a memory
space of OðMðDþNÞÞ.

5 EXPERIMENTS

We evaluate the performance of the proposed LDSDC algo-
rithm by experiment. All experiments are implemented
on a server cluster comprising four machines. Each machine
is equipped with an Intel E7-4809 v2 1.90G 48-core CPU,
60 GB memory, running Spark 2.1.0.

Algorithm 1. Fast ML Estimation for SGM

Input: SamplematrixX 2 RM�N , Subspace dimensionD 2 R

Output: m̂m 2 RM; P̂ 2 RM�D; Ŝ 2 RD�D; ŝ0

1 m̂m ¼ 1
N X11N ;

2 �X ¼ X� m̂m1TN ;

3 Initialize P̂ as ID; 0½ 
T2 RM�D;
4 repeat
5 UpdateG ¼ �Xð�XT P̂Þ;
6 DecomposeG into UDVT ;
7 Update P̂ ¼ UVT ;
8 until Convergence;

9 Ŝ ¼ 1
N D;

10 ŝ0 ¼ 1
M�D

1
N

PM
m¼1 �x

T
m�xm � TrðŜÞ

	 

, where �xTm is the mth row

of �X;

5.1 Baseline Methods and Parameter Setting

We select four state-of-the-art distributed clustering algo-
rithms as baseline methods for performance comparison,
including k-meansk [57], DBDC [4], LSHDDP [32], REMOLD
[16]. Note that REMOLD is a preliminary version of ourwork.
Among the baseline methods, DBDC and LSHDDP share a
commondensitymeansure,which is described as follows.

� � cut-off density. It is defined as the number of samples
falling inside a ball of radius �. The parameter � is esti-
mated as the 2 percent position of the ascending
ordered distances among all sample pairs according to
the recommendation in [32].

Table 1 lists detailed parameter settings for all the meth-
ods under test. The best performance is obtained for each
method by searching throughout the parameter space stated
in this table. To make the results stable and repeatable, the
reshuffling pre-process is performed for all methods.

TABLE 1
Simulation Settings of All the Methods Under Test

Method Setting

k-meansk The parameter k is set to the real class number.
We run it five times for each dataset with
different random seeds.

DBDC Use � cut-off density. The parameterMinPts is
determined by � � �r, where � is selected from
f0:01; 0:05; 0:1; 0:5; 1g and �r is themean density.
Each outlier is assigned to its nearest cluster.

LSHDDP Use � cut-off density. The samples with top k
gamma values (refer to [30]) are chosen as
cluster centers, where k is the real class
number. We set parametersM ¼ 10 and p ¼ 3
according to the recommendation in [32].

REMOLD The parameterK is set to
ffiffiffiffiffiffiffiffiffiffiffiffi
N=W

p
, whereN and

W are the numbers of samples and sub-sites,
respectively. The parameter d is enumerated in a
candidate collectionD, which is extracted by an
auxiliary algorithm [16].

LDSDC
(Proposed)

The parameterD is set to the smallest integer
such that the retained eigenvalue ratio (i.e., the
ratio of the sum of retained eigenvalues to the
sum of total eigenvalues) of the sample
covariance matrix (cf. (14)) is greater than 70%.
All the other parameters are determined by the
same way as REMOLD.
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5.2 Datasets

We evaluate our method on three series of datasets, i.e., syn-
thetic Gaussian datasets, synthetic norm-ball surface data-
sets and real-world datasets, which are presented in the
following subsections, respectively.

5.2.1 Synthetic Gaussian Datasets

First, we test all the five algorithms on the most common
Gaussian datasets. Each dataset consists of Gaussian clus-
ters with various embedding dimensions. Specifically, an
M-dimensional cluster with D embedding dimension is
generated through the following procedure.

1) Generate a Gaussian random (element-wise) matrix
T 2 RM�D and normalize it by T

kTkF .

2) Generate a shift vector mm 2 RM whose elements are
independently sampled from a uniform distribution
over the interval ½� 20

logM ; 20
logM
.

3) A sample is generated as

x ¼ Tzþ mmþ ��; (27)

where z � Gð0; IDÞ and �� � Gð0; 1
10M IMÞ.

4) Repeat 3) 2,500 times, and these samples constitute a
cluster (i.e., each cluster consists of 2,500 samples).

Ten datasets with dimension from 2 to 1,024 are gener-
ated and detailed information about these datasets are listed
in Table 2.

5.2.2 Synthetic Norm-Ball Surface Datasets

Unlike Gaussian datasets, in which clusters are shaped like
ellipsoids and not very difficult in clustering, synthetic norm-
ball surface datasets include clusters with non-convex shapes,
which is more challenging to most methods. Specifically, an
‘p-norm ball surface in D-dimensional space refers to the set

ED
p ¼ fzjz 2 RD; kzkp ¼ 1g. Furthermore, by left multiplying

a semi-orthonormal matrix P 2 RM�DðD < MÞ, ED
p can be

embedded in anM-dimensional space.Wedenote the embed-
ded norm-ball surface as ED;M

p ¼ fPzjz 2 RD; kzkp ¼ 1g. Thus
norm-ball surface datasets are generated by sampling from

three different norm-ball surfaces 0:5ED;M
0:5 , ED;M

1 and 1:5ED;M
2 ,

where D and M are chosen to produce data with different
dimensions. We generate ten datasets whose detailed infor-
mation is given in Table 3, and Fig. 4 gives two illustrative
examples.

5.2.3 Real-World Datasets

We select five HD real-world datasets for our experiments.
Among them, Salinas, PaviaC and PaviaU are three hyper-
spectral images (HSIs) [58]. Salinas was collected by the AVI-
RIS sensor over agricultural crops in Salinas Valley, California,

TABLE 2
Ten Synthetic Gaussian Datasets

Dataset #Samples #Dimensions #Clusters
Number of Clusters with Embedded Dimension

#Partitions (sub-sites)
2-D 4-D 8-D 16-D 32-D 64-D 128-D 256-D 512-D 1024-D

G-1 50,000 2 20 20 4
G-2 100,000 4 40 20 20 4
G-3 150,000 8 60 20 20 20 4
G-4 200,000 16 80 20 20 20 20 4
G-5 250,000 32 100 20 20 20 20 20 8
G-6 300,000 64 120 20 20 20 20 20 20 8
G-7 350,000 128 140 20 20 20 20 20 20 20 16
G-8 400,000 256 160 20 20 20 20 20 20 20 20 16
G-9 450,000 512 180 20 20 20 20 20 20 20 20 20 32
G-10 500,000 1,024 200 20 20 20 20 20 20 20 20 20 20 32

The first column is dataset code, where G-l implies its dimension is 2l. Columns from two to four are the number of samples, dimensions and clusters in each data-
set, respectively. Columns from five to fourteen present the distribution of clusters with different embedding dimensions, where D-D is the abbreviation of
D-dimension. The last column gives the number of partitions (i.e., sub-sites) for each dataset.

TABLE 3
Ten Synthetic Norm-Ball Surface Datasets

Dataset #Samples #Dimensions #Clusters Surface Set #Partitions

S-1 1500 2 3 Sð2Þ 2
S-2 3,000 4 3 Sð3Þ 2
S-3 6,000 8 3 Sð4Þ 2
S-4 12,000 16 3 Sð5Þ 4
S-5 24,000 32 3 Sð6Þ 4
S-6 48,000 64 3 Sð7Þ 4
S-7 96,000 128 3 Sð8Þ 8
S-8 182,000 256 3 Sð9Þ 8
S-9 364,000 512 3 Sð10Þ 16
S-10 728,000 1,024 3 Sð11Þ 32

The first column is dataset code, where S-l implies its dimension is 2l. Columns
from two to four are the numbers of samples, dimensions and clusters in each
dataset, respectively. The fifth column shows the corresponding norm-ball sur-

face set SðDÞ ¼ f0:5ED;2D�1

0:5 ; ED;2D�1

1 ; 1:5ED;2D�1

2 g. The last column gives the
number of partitions (i.e., sub-sites) for each dataset.

Fig. 4. Two illustrative examples for three norm-ball surface datasets,
including (a) an example sampled from 0:5E2;3

0:5 (blue), E2;3
1 (orange) and

1:5E2;3
2 (green), and (b) an example sampled from 0:5E3;3

0:5 (blue), E3;3
1

(orange) and 1:5E3;3
2 (green).
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and is characterized by high spatial resolution (3.7-meter pix-
els). Its size is 512 lines by 217 samples, in addition to 204 spec-
tral bands used. It has 16 classes including vegetables, bare
soils, and vineyard fields. PaviaU and PaviaC are two scenes
acquired by the ROSIS sensor during a flight over Pavia,
nothern Italy. The spatial size is 610� 340 for PaviaU and
1096� 715 for PaviaC. PaviaU and PaviaC were acquired
using 103 spectral bands and 102 spectral bands, respectively.
Both of them contain 9 classes. Fig. 5 shows the color compos-
ite images and the ground truth maps for the three datasets.
We also consider another real-world dataset MNIST [59], con-
taining 60,000 examples of handwritten digits from 0 to 9, and
each example has a dimension of 784 (28� 28). Fig. 6 shows
some samples of MNIST. MNIST1M [60] is an extended ver-
sion of MNIST with 1,000,000 samples. Table 4 lists the
detailed information about these datasets.

5.3 Performance Metric

We evaluate the clustering quality of all the algorithms
under test by two measures: normalized mutual informa-
tion (NMI) and purity. The larger the two measures, the bet-
ter the clustering quality.

NMI [61] is a clustering metric from the information-
theory, and it quantifies the “amount of information” as
follows. Given a dataset V of size N , suppose there are I
clusters and J true classes. Let Ni, N

ðjÞ and N
ðjÞ
i denote the

number of samples in cluster i, true class j, and both cluster
i and true class j, respectively. Then, NMI is computed by

NMI ¼
PI

i¼1

PJ
j¼1

N
ðjÞ
i
N log

NN
ðjÞ
i

NiN
ðjÞPI

i¼1
Ni
N log Ni

N

PJ
j¼1

NðjÞ
N log NðjÞ

N

:

Purity [62] counts the number of correctly assigned sam-
ples divided by the size of the dataset. Given a dataset with
size N , suppose that fC1; C2; . . .; CIg and fW1;W2; . . .;WJg
are the set of clusters and true classes, respectively. The
purity is defined by

purity ¼ 1

N

XI
i¼1

max
1�j�J

jCi \Wjj:

Notice that purity cannot be used for trade-off between the
quality of the clustering versus the number of clusters (e.g.,
dividing a dataset into singletons can get the perfect score),
so we report the purity only for the clustering result with
the highest value of NMI.

In addition, we also report the amount of transmission
cost and the running time (machine time spent on the whole
clustering process) for each method in the conducted
experiments.

5.4 Experimental Results

5.4.1 Results on Synthetic Gaussian Datasets

The clustering results for the Gaussian datasets are shown
in Fig. 7.

From Fig. 7a, one can observe that, in terms of NMI
measure, LSHDDP (denoted as “ ”) performs best; both
LDSDC (denoted as “ ”) and REMOLD (denoted as “ ”)
also perform well with comparable performance; k-meansk

Fig. 5. Hyperspectral datasets of color composite images together with
the ground truth maps for (a) Salinas, (b) PaviaC, and (c) PaviaU,
respectively.

Fig. 6. Some typical samples of the MNIST dataset.

TABLE 4
Detailed Information for Five Real-World Datasets

Dataset #Samples #Dimensions #Clusters #Partitions

Salinas 111,104 206 16 8
PaviaU 207,400 105 9 8
PaviaC 783,640 104 9 16
MNIST 60,000 784 10 4
MNIST1M 1,000,000 784 10 32

Columns from two to four are the number of samples, dimensions and clusters
in each dataset, respectively. The last column gives the number of partitions
(i.e., sub-sites) for each dataset.

Fig. 7. Performance comparison of the five methods under test on the
Gaussian datasets. (a) NMI, (b) purity, (c) transmission cost (mega bytes
in semi-log scale) (d) running time (seconds in semi-log scale), w.r.t. the
index of the datasets, respectively.
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(denoted as “ ”) achieves almost perfect performance for
the LD datasets G-2, G-3 and G-4, but its performance seri-
ously degrades as data dimension increases possibly due to
many local minima in HD datasets; and DBDC (denoted as
“ ”) performs worst except for the LD dataset G-1 because
the model used is too simplified to accurately model the
complex distribution in HD datasets. In terms of the purity
measure, the corresponding performances of all the algo-
rithms are shown in Fig. 7b. The performance behaviors of
k-meansk, LSHDDP, REMOLD and LDSDC observed from
Fig. 7a also apply to Fig. 7b. DBDC shows different low-
quality performance behaviors in Figs. 7a and 7b, although
its performance is comparable to LDSDC and REMOLD for
the datasets of G-7, G-8 and G-9 in Fig. 7b, indicating that it
may over-divide the datasets into finer clusters.

The corresponding transmission cost (mega bytes) is pre-
sented in Fig. 7c. A common performance behavior for all
the algorithms except DBDC can be seen from this figure,
showing that the transmission cost linearly increases with
the data dimension in the semi-log scale. Furthermore,
LSHDDP has the heaviest transmission cost due to reshuf-
fling the dataset several times; k-meansk has lower trans-
mission costs (proportional to the product of the size and
the dimension of the dataset) for LD datasets G-1 through
G-4 than LDSDC and REMOLD, while LDSDC has lower
transmission costs for HD datasets G-6 through G-10 than
k-meansk and REMOLD. It is noticeable that their transmis-
sion costs are almost the same for the dataset G-5 (median
dimension), and specifically, REMOLD needs to transmit 13
gigabytes but the cost of LDSDC is just 0.5 gigabytes for the
HD dataset G-10. DBDC has the lowest transmission cost
since the amount of the parameters for transmission in its
own operation rule is not sensitive to the volume of
datasets.

The running time (seconds) comparison for all themethods
under test is shown in Fig. 7d. Again, a common performance
behavior for all the algorithms can be seen from this figure,
showing that the trend of running time linearly increases with
the data dimension in semi-log scale. The trends associated
with LSHDDP, LDSDC and REMOLD have similar growth
rate, but LSHDDP (with highest NMI score) has much higher
running time than LDSDC and REMOLD due to extraordi-
nary repeated distance calculations of numerous sample
pairs. Instead, LDSDC (with smaller growth rate than
REMOLD for G-7 through G-10) achieves NMI and purity
performances comparable to LSHDDP at the expense of
more economical computation cost. For instance, the former
can handle the dataset G-10 within an hour, but the latter
needs over four hours. The running time for DBDC is basic-
ally smaller than that for both LDSDC and REMOLD toget-
her with smaller growth rate. Finally, the running time for
k-meansk is the lowest, showing its high efficiency in han-
dling large but LDdatasets.

5.4.2 Results on Synthetic Norm-Ball Surface Datasets

The clustering results for the norm-ball surface datasets are
shown in Fig. 8.

Fig. 8a exhibits the NMI scores for all the methods under
test. Some observations from this figure are as follows. The
proposed LDSDC ( ) significantly outperforms all the other

methods with NMI scores between 0.6 and 0.85, and its per-
formance is insensitive to both of the data dimension and
cluster structure. Overall, REMOLD ( ) performs second
and LSHDDP ( ) performs third. However, k-meansk ( ,
designed for classifying convex clusters) and DBDC ( ,
with insufficient core samples in modeling the HD distribu-
tion) basically fail for all the datasets despite the highest
NMI score of the latter for the LD dataset S-1. In terms of
purity, as shown in Fig. 8b, the performance ranking and
behaviors of all the algorithms are basically consistent with
those associated with Fig. 8a, namely, the proposed LDSDC
performs best with almost perfect purity scores (near 1),
REMOLD performs second with purity scores between 0.65
and 1, and LSHDDP performs third with purity scores
below 0.65, and k-meansk and DBDC share the bottom per-
formance. These experimental results demonstrate that the
proposed LDSDC algorithm is much robust to complex
non-convex clusters and data dimension than all the other
algorithms.

The corresponding transmission cost (mega bytes in semi-
log scale) is presented in Fig. 8c. The linear-increase behavior
of transmission cost in semi-log scale observed from Fig. 7c
can also be observed from Fig. 8c for all the algorithms under
test. Though their growth rates are also similar, their transmis-
sion cost ranks are LSHDDP (rank 1, highest), REMOLD (rank
2), LDSDC (rank 3), k-meansk (rank 4) and DBDC (rank 5,
lowest). It is noticeable that REMOLD and LDSDC seem to
share similar network costs for the first four datasets, but the
former expends the cost for the HD dataset S-10 about 30
times higher than the latter due to larger growth rate in semi-
log scale. As for the running time comparison (seconds in
semi-log scale) shown in Fig. 8d, basically, the linear-increase
trends (in semi-log scale) versus the data dimension associ-
ated with Fig. 7d also apply to Fig. 8d for all the algorithms
under test, showing that their running time ranks are

Fig. 8. Performance comparison of the five methods under test on the
norm-ball surface datasets. (a) NMI, (b) purity, (c) transmission cost
(mega bytes in semi-log scale), (d) running time (seconds in semi-log
scale), w.r.t. the index of the datasets, respectively.
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LSHDDP (rank 1, highest), REMOLD (rank 2), LDSDC (rank
3), k-meansk (rank 5 over HD datasets) and DBDC (rank 5
over LD datasets). Finally, let us mention that LDSDC and
REMOLD expend almost the same running time over all the
datasets except for the HD dataset S10, and that k-meansk has
a stable low running-time cost for all the datasets (owing to its
simple computation at each iteration), while DBDC has an
amazingly low running-time cost for the first four datasets
but its running-time cost rapidly increases for the other HD
datasets. Overall, the above experimental results on various
synthetic datasets have demonstrated that the proposed
LDSDC outperforms the other four sate-of-the-art algorithms.

5.4.3 Results on Real-World Datasets

Fig. 9 shows the performance comparison of the five algo-
rithms using five real-world datasets. One can see from
Fig. 9a that in terms of NMI, LDSDC (green bar) gets the
hightest score only for Sainas, and the second highest score
for the other four datasets. However, its NMI performance
is much worse for the two datasets MNIST and MNST1M
possibly due to the binary nature of the data (either around
0 for black pixels or around 255 for white pixels), thereby
causing lower modeling accuracy since the SGM itself is a
continuous distribution model. However, we would like to
emphasize that the performance of LDSDC is either the
best, or the second best but very comparable to the best for
each dataset, thereby exhibiting its performance consistence
(and robustness) over the five datasets. Among the five
methods, only REMOLD (denoted by purple bar) achieves
competitive performance compared to LDSDC, while the
other algorithms cannot maintain consistent good perfor-
mance over the five datasets.

Fig. 9b shows the corresponding performance compari-
son results in terms of the purity score. From this figure,

one can observe that the performance of REMOLD is either
the best, or the second best but comparable to the best for
each dataset, thereby exhibiting its performance consistence
(and robustness) over the five datasets. Nevertheless, the
performance of the proposed LDSDC is very comparable to
that of REMOLD over all the datasets. Hence, these results
also support LDSDC’s good performance quality and con-
sistence over the five datasets.

The corresponding transmission cost (mega bytes) and
running time (seconds) are shown in Figs. 9c and 9d (semi-log
plots), respectively. As mentioned above, the performance
qualities (NMI and purity) of k-meansk (denoted by blue bar),
DBDC (denoted by red bar) and LSHDDP (denoted by dark
yellow bar) are neither satisfactory nor consistent over the five
datasets. Instead, let us only focus on transmission cost and
running time associatedwith REMOLD and LDSDC. One can
observe, from Figs. 9c and 9d, that their running times are
comparable to each other, while the transmission cost associ-
ated with latter is much lower than the former (in semi-log
scale). Therefore, these experimental results on the five real-
world datasets well support the overall superior efficacy (per-
formance quality, computation cost and network overhead)
of the proposed LDSDC algorithm over the other four state-
of-the-art algorithms.

5.5 Parameter Sensitivity Analysis

The clustering performance of the proposed LDSDC dep-
ends on the number of sub-sites (NoS) and three user-speci-
fied parameters, i.e., K (number of K NNs), D (dimension
of subspace in SGM) and d (threshold for model merging).
We investigate the performance sensitivity of these parame-
ters with seven representative datasets (G-6, G-7, S-7, S-8,
Salinas, PaviaU and MNIST) in the following subsections,
respectively.

5.5.1 Sensitivity to Number of Sub-Sites

In this experiment, LDSDC is tested under the default
parameter settings given in Table 1, and the experimental
results are obtained for NoS between 2 and 18 such that the
running time is within a reasonable range for each dataset
for ease of illustration. From Fig. 10, one can observe that
the NMI scores decrease slowly with NoS in trend, but not
very sensitive to NoS in spite of some fluctuations for S-7
and S-8 datasets. As for the metric of purity, similar perfor-
mance behavior can be observed in Fig. 10b. On the other
hand, as shown in Fig. 10c, the transmission costs increase
linearly in trend, though the linear trends for G-7 and
MNIST are much higher than for the other datasets due to
their diverse cluster distributions and high-dimensionality.
Finally, as shown in Fig. 10d, the running times decrease
with NoS exponentially instead.

In conclusion, the increase of the NoS will lead to slight
degradation of the clustering performance and moderate or
mild growth in the transmission cost on one hand, exponen-
tially higher efficiency on the other hand.

5.5.2 Sensitivity toK andD

Let RER ,
PD

i¼1
�iðCÞ

TrðCÞ be the retained eigenvalue ratio of the
data covariance matrix C (cf. (14)) in the D-dimensional

Fig. 9. Performance comparison of the five methods under test on the
five real-world datasets by bar graph, including (a) NMI, (b) purity, (c)
transmission cost (mega bytes in semi-log scale) and (d) running time
(seconds in semi-log scale).
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subspace of SGM.Obviously, the larger the RER, the larger the
parameter D. The experimental results for NMI versus
x ¼ K=

ffiffiffiffiffiffiffiffiffiffiffiffi
N=W

p
and RER (instead of D) are displayed in

Fig. 11 where 0:2 � x � 2 and 10% � RER � 90% for each
dataset. Overall, the variation of NMI is mild, indicating
LDSDC’s low performance sensitivity to ðK;RERÞ; the
smaller the value ofK or the larger the value of RER, the better
the NMI performance. Moreover, as shown in Fig. 11a
through Fig. 11d, the NMI performance is better for G-6 and
G-7 (synthetic Gaussian datasets) than for S-7 and S-8 (syn-
thetic norm-ball surface datasets) besides larger fluctuations
for the latter; as shown in Fig. 11e through Fig. 11g, it is better
for Salinas and PaviaU datasets than for MNIST dataset in
spite of slightly larger fluctuations for PaviaU.

In summary, the performance of LDSDC is not very sensi-
tive to K and RER, for which a good choice is K � ffiffiffiffiffiffiffiffiffiffiffiffi

N=W
p

andRER 	 70%.

5.5.3 Sensitivity to d

In this subsection, for the parameter d 2 ½0; 1
, we present the
qualitative analysis, followed by the quantitative analysis.
First of all, the larger d, the larger the number of clusters,
implying that a positive correlation between them. As men-
tioned in Section 3.3, only a small collection of finite d values,
denoted as the set D here, can affect the final clustering. More-
over, themapping from d 2 D to the number of clusters is bijec-
tive (one-to-one and onto). Hence, LDSDC can uniquely yield
the clusters with the desired clustering number. However, if
the prior information about the clustering number is not avail-
able, LDSDC can produce a series of hierarchical results by
enumerating each d 2 D, thereby providing a comprehensive
perspective to the underlying structure in the dataset.

To further analyze how d affects the clustering perfor-
mance, the NMI performances of the LDSDC are displayed

in Fig. 12 for all the datasets in our experiments as d varies.
One can see, from the left plot (Gaussian datasets) in Fig. 12,
that the NMI starting from d ¼ 0 increases as d increases
either mildly or rapidly like mountain climbing, and finally
reaches the top of the mountain (a plateau or roughly a pla-
teau) for d 	 0:8. From the mid plot (norm-ball surface data-
sets) in Fig. 12, we can see that each NMI increases with d in
a very nonlinear manner due to complex distributions of
the datasets, and the maximum NMI appears for d 	 0:8
except the dataset S-9 for which NMI has been on a plateau
for d 2 ½0:6; 0:77
. As for the right plot (real-world datasets)
in Fig. 12, each NMI increases with d in a less tractable
(more mild) manner than that associated with Gaussian
datasets (norm-ball surface datasets), and it reaches either a
plateau or the maximum over [0.8,1].

In conclusion, in practical applications, we suggest
that users can choose a suitable d from the intersection

Fig. 10. The clustering performance of LDSDC as a function of the num-
ber of sub-sites, including (a) NMI, (b) purity, (c) transmission cost
(mega bytes) and (d) running time (seconds).

Fig. 11. The clustering performance (measured by NMI) of LDSDC as a

function of x ¼ K=
ffiffiffiffiffiffiffiffiffiffiffiffi
N=W

p
and RER % (which is larger for larger D) for

datasets (a) G-6, (b) G-7, (c) S-7, (d) S-8, (e) PaviaU, (f) Salinas and (g)
MNIST, respectively.
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of [0.8,1] and D through the elbow method based on
intrinsic metrics [1].

6 CONCLUSION

Based on the fact that local samples of HD data usually reside
in LD data spaces, we have presented a distributed clustering
algorithm (LDSDC algorithm) as shown in Fig. 1, especially
for HD datasets with complex cluster structures. The pro-
posed LDSDC algorithm uses the SGM for modeling every
local cluster (atom cluster) in the LD space (conducted in
every sub-site), and then get upgraded SGMs for all the col-
lected local atom clusters in the global site together with a
cluster merging table (determined by the threshold parameter
d for model merging) for each sub-site to yield the final clus-
tering result. Some experimental results using synthetic data-
sets and real-world datasets were presented to demonstrate
the effectiveness of the proposed LDSDC algorithm and its
overall superior performance (clustering quality, network
overhead, and computation cost) over four benchmark algo-
rithms (k-meansk, DBDC, LSHDDP and REMOLD), in spite
of some performance degradation when the given datasets
are basically constituted by finite discrete feature values (e.g.,
datasets MNIST and MNIST1M). Finally an analysis for the
proposed LDSDC about its performance sensitivity to the sys-
temparameterswas presented.

Some further studies are left in the future, including exten-
sion of the proposed LDSDC from facilitator sub-site net-
works to P2P networks, design of an automatic strategy for
the parameter d, and development of a privacy-preserving
LDSDCdue to increasing concerns of personal privacy.
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